The JPL RL06 GRACE Gravity Solutions

David N. Wiese¹, Christopher M. McCullough¹, Dah-Ning Yuan¹, Carmen Boening¹, Felix Landerer¹, Michael Watkins¹

¹Jet Propulsion Laboratory, California Institute of Technology

September 17, 2018

Gravity Geoid and Height Systems 2

Copenhagen, Denmark

RL06 Data Products

- Unconstrained Monthly Spherical Harmonic Solutions
 - 60 x 60
 - 96 x 96
 - 60 x 30 in months with deep repeat orbits
- Constrained 3° Spherical Cap Mascon Solution
 - Solution with Coastline Resolution Improvement (CRI) Filter
 - Solution without CRI Filter
 - Calibrated errors are provided
- New Filename Definitions and YAML headers in RL06 harmonic products
- Mascon solutions are NetCDF format
- Solutions can be accessed through PODAAC or GRACE Tellus (grace.jpl.nasa.gov)

Data Overview

Months with only GRACE-A Accelerometer Data

		RL05	RL06
*Only for Single Accelerometer months	Harmonics	ACC1B V02 (5-second rate) KBR1B V02 (5-second rate) SCA1B V02 (5-second rate) GPS1B V02 (300-second rate)	ACC1B V02 (5-second rate) KBR1B V03 (5-second rate) SCA1B V03 (5-second rate) GPS1B V02 (30-second rate) - downweighted *ACT1B V02 (5-second rate)
	Mascons	ACC1B V02 (5-second rate) KBR1B V02 (5-second rate) SCA1B V02 (5-second rate)	ACC1B V02 (5-second rate) KBR1B V03 (5-second rate) SCA1B V03 (5-second rate) GPS1B V02 (30-second rate) - downweighted *ACT1B V02 (5-second rate)
*Only for Single Accelerometer months	Harmonics and Mascons	Satellite States: once per day; GPS phase biases: once per pass; KBR range-rate empirical biases/drifts/once-per- rev: 90 min; Accelerometer Biases/Rates: X and Z daily, Y is 3 hourly; *Empirical accelerations (constant, once/rev) every 90 min in alongtrack and crosstrack	Satellite States: once per day GPS phase biases: once per pass KBR range-rate empirical biases/drifts/once-per- rev: 90 min Accelerometer Biases/Rates: X and Z daily, Y is 3 hourly Full Accelerometer Scale Matrix: daily (Klinger et al., 2016) *Empirical accelerations (constant, once/rev) every 90 min in alongtrack and crosstrack

	RL05	RL06	Remarks
Static Field	gif48 180x180	ggm05c 360x360	Epoch changes from 01/07 to 01/08; earthquakes included in the static field
Atmosphere/Ocean Dealiasing Product	AOD RL05 6-hr, 100x100	AOD RL06 3-hr, 180x180	GAE, GAF, GAG products no longer needed
Ocean Tides	GOT4.7 90x90	FES2014 180x180	Changes from 90x90 to 180x180
Air Tides	Ray and Ponte, 2003	Ray and Ponte, 2003	S1 and S2, 100x100
Mean Pole	IERS2010	Linear Mean Pole (Ries, 2017)	Correction to C ₂₁ recommended by Wahr et al., 2015 is no longer needed
N-body Perturbations	DE421	DE430	

C21/S21

Average over all GRACE months

April 2008 with 300 km Gaussian smoothing

Solution Quality

Global Spatial RMS of monthly differences between JPL Mascons: Smoothed at 300 km

Single Accelerometer Months

Two accelerometer Solution
Single accelerometer Solution

JulAugSepOctNovDec2016

RL06 uses an improved accelerometer transplant from GRACE-A to GRACE-B which accounts for thruster firings on GRACE-B. (Bandikova et al., in prep.)

Average over single accelerometer months

Pitch Bias degradation is reduced (May 2017)

RL05: V02 Level-1 Data

Errors manifest in zonal harmonics leading to latitudinal banding in the gravity field

RL06: V03 Level-1 Data
Reduced high frequency noise in the attitude
Improves the solution

GEO-FIT plots: monthly gravity field correction mapped into range accelerations

Single Accelerometer – Low Degrees

Single Accelerometer – Low Degrees

- RL06 processing strategy is fundamentally the same as RL05
- Improvements made
 - Addition of GPS normal equations
 - Change in the GIA forward model to ICE-6GD
 - Relaxation in initial conditions for time correlation run
 - Earthquake constraints have improved
 - Full Accelerometer Scale Matrix is estimated daily

- Improved estimates of single accelerometer months
 - Low degree coefficients are much more reasonable
- Small reduction in noise relative to RL05
- Better estimate of C₂₀
 - SLR-replacement still recommended
- RL06 is very much "in family" with RL05
- Updated GIA correction: ICE-6GD (Peltier et al., 2018)

Mascons provide a "reasonable" estimate for C_{20} . The difference in trend with SLR (Cheng et al., 2013) is not well understood. We still replace the C_{20} coefficient with SLR values because of this.

Correlation with AMOC

We compare transport in the Lower North Atlantic Deep Water with the in-situ RAPID array using methods from Landerer et al., 2015

Correlation changes from 0.63 to 0.61

RMS relative to RAPID array decreases from 1.58 Sv to 1.14 Sv.

GRACE / GRACE-FO

Comparison with BPRs

Correlation with in-situ data Global improvement in correlation coefficient: 0.02

RMS relative to in-situ data Global improvement in RMS reduction: 0.5 mm

Comparison over 50 hydrological basins

Monthly residuals about a climatology fit to the timeseries

We attribute the slight reduction in residuals in RLO6 to a decrease in noise in the solution

RL06: Jan 2014 – Dec 2013

RL06 Mascons vs Harmonics

Comparison over 50 hydrological basins

Harmonics have been destriped and smoothed (300 km), and scale factors applied to both solutions

Ice Sheets: RL05 vs. RL06

Land/Ocean: RL05 vs. RL06

RL05: -0.33 mm SLE/yr RL06: -0.42 mm SLE/yr

RL05: 1.59 mm SLE/yr RL06: 1.62 mm SLE/yr

Conclusions

- JPL RL06 Data products are now (or soon will be) available for use
- RL06 Harmonics represent a large improvement over RL05
 - Still some issues with low degree coefficients during single accelerometer months
- RL06 Mascons improve over RL05 Mascons
 - Better estimate of C₂₀
 - Reduction in residual noise in the solution
 - Reasonable estimates for low degree coefficients during single accelerometer months – this provides for better continuity with GRACE-FO

